
 

 

  
Abstract—The possibility of applying the maximum principle of 

Pontryagin to the problem of optimization of electronic circuits is 
analyzed. It is shown that in spite of the fact that the problem of 
optimization is formulated as a nonlinear task, and the maximum 
principle in this case isn't a sufficient condition for obtaining a 
minimum of the functional, it is possible to obtain the decision in the 
form of local minima. The analysis of optimization process for some 
circuits showed that application of the maximum principle really 
allows finding the optimum structure of the control vector by means 
of iterative procedure. The theoretical justification is given for the 
earlier discovered effect of acceleration of the process of circuit 
optimization in the conditions of a new methodology of design. The 
relative acceleration of the CPU time for the best strategy found by 
means of maximum principle compared with the traditional approach 
is equal two to three orders of magnitude. 
 

Keywords—Control theory approach, generalized optimization 
methodology, maximum principle, set of optimization strategies.  

I. INTRODUCTION 
O improve the overall quality of electronic circuit designs, 
it is very important to reduce their design time. Many 

works devoted to this problem focus on how to reduce the 
number of operations when solving two main problems: circuit 
analysis and numerical optimization. By solving these 
problems successfully, one can reduce the total time required 
for analogue circuit optimization and this fact serves as a basis 
for improving design quality.  

The methods used to analyse complex systems are being 
improved continuously. Some well-known ideas related to the 
use of a method of sparse matrixes [1] and decomposition 
methods [2] are used for the reduction of time for the analysis 
of circuits. Some alternative methods such as homotopy 
methods [3] were successfully applied to circuit analysis. 

Practical methods of optimization were developed for 
circuit designing, timing, and area optimization [4]. However, 
classical deterministic optimization algorithms may have a 
number of drawbacks: they may require that a good initial 
point be selected in the parameter space, they may reach an 
unsatisfactory local minimum, and they require that the cost 
function be continuous and differentiable. To overcome these 
issues, special methods were applied to determine the initial 
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point of the process by centring [5] or applying geometric 
programming methods [6]. 

A more general formulation of the circuit optimization 
problem was developed on a heuristic level some decades ago 
[7]. This approach ignored Kirchhoff’s laws for all or part of a 
circuit during the optimization process. The practical aspects 
of this idea were developed for the optimization of microwave 
circuits [8] and for the synthesis of high-performance analogy 
circuits [9] in an extreme case where all the equations of the 
circuit were not solved during the optimisation process. 

In work [10] the problem of circuit optimization is 
formulated in terms of the theory of optimal control. Thus, the 
process of circuit optimization was generalised and defined as 
the dynamic controllable system. In this case, the basic 
element is the control vector that changes the structure of the 
equations of the system of optimization process. Thus, there is 
a set of strategies of optimization that have different number of 
operations and different computing times. The introduction 
and analysis of the function of Lyapunov of the optimization 
process [11-12] allows comparison of various strategies of 
optimization and choosing the best of them having minimum 
processor time. At the same time, the problem of searching for 
the optimal strategy and the corresponding optimal trajectory 
can be solved most appropriately by the maximum principle of 
Pontryagin [13]. 

The main complexity of application of the maximum 
principle consists of the search of initial values for auxiliary 
variables at the solution of the conjugate system of equations. 
Application of the maximum principle in case of linear 
dynamic systems is based on the creation of an iterative 
process [14-15]. 

In case of nonlinear systems, the convergence of this 
process is not guaranteed. However, application of the 
additional approximating procedures [16] allows constructing 
sequence of the solutions converging to a limit under certain 
conditions. 

The first step in the problem of possibility of application of 
maximum principle for circuit optimization was presented in 
[17]. In the present work, the application of the maximum 
principle for circuit optimization was investigated with a 
sufficient accuracy. 

II. PROBLEM FORMULATION 
In accordance with the conventional approach, the process 

of electronic circuit optimization is defined as the problem of 
minimizing an objective function ( )XC , NR∈X , with 
constraints given by a system of the circuit´s equations based 
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on Kirchhoff’s laws. We assume that, by minimizing ( )XC , 
we achieve all our design goals. The circuit optimization 
problem can be generalized by introducing a special control 
vector ( )Muuu ,...,, 21=U  and a special generalized 
objective function ( )UX,F . The electronic circuit 
optimization process can be defined as the problem of 
minimizing the generalized objective function ( )UX,F  based 
on the vector equation (1) with the constraints (2). The system 
of constraints is the mathematical model of the electronic 
circuit. 

 
s

s
ss t HXX +=+1 ,          (1) 

  
( ) ( ) 01 =− Xjj gu ,   j=1, 2,..., M,        (2) 

 
where NR∈X , ( )XXX ′′′= , , KR∈′X  is a vector of 

independent variables, MR∈′′X   is a vector of dependent 
variables, М is the number of the circuit’s dependent variables, 
K is the number of independent variables, N is the total 
number of variables (N=K+M) and t s  is an iteration 
parameter. The equation (1) describes a two-step minimization 
procedure, and the function H ≡ H(X,U) determines the 
direction in which the generalized objective function ( )UX,F  
decreases. The functions ( )Xjg  for all j define the equations 

of the circuit model. The components of control vector U are a 
set of control functions: ( )Muuu ,...,, 21=U , where 

uj ∈ Ω, { }Ω = 0 1; . The vector U leads to redistribution of 
expenses of computing time between the block of procedure of 
optimization (1) and the block of the analysis of the scheme 
(2). The complete set of different optimization strategies 
(structural basis) includes 2M strategies. The generalized 
objective function ( )UX,F  can be defined, for example, as 
follows: 
 

  ( ) ( ) ( )UXXUX ,, ϕ+= CF ,        (3) 
  
where ( )XC  is a non-negative ordinary objective function of 
the optimization process and ( )UX,ϕ  is a penalty function. 
The structure of the penalty function must potentially include 
all the equations from the system (2) and can be defined, for 
example, as follows: 
 

 
( ) ( )XUX ∑

=

=
M

j
jj gu

1

21,
δ

ϕ ,         (4) 

 
where δ  is an additional coefficient used to adapt the penalty 
function. In our context, δ

 
equals 1.  

This definition of the circuit optimization problem allows us 
to redistribute the computing time between the problems (1) 
and (2). A control function u j  has the following meaning: if 

0=ju , the jth equation is present in the system (2) and the 

term ( )X2
jg  is removed from the equation (4); and, the other 

way around, if 1=ju , the jth equation is removed from the 

system (2) and the term ( )X2
jg  is present in the equation (4). 

We can define two special strategies: U=(0,0,…,0) and 
U=(1,1,…,1). The first strategy can be named as Traditional 
Strategy of Optimization (TSO) and corresponds to the 
solution of system (2) at each point of optimization process. 
The second strategy can be named as Modified Traditional 
Strategy of Optimization (MTSO) and corresponds to the 
elimination of the system (2), but in this case all the 
information on the circuit is included in the penalty function 
(4). The vector U is the main tool of this methodology: it 
controls the dynamic process of minimizing the objective 
functions ( )UX,F  and ( )XC  in the possible minimum time. 
This definition allows us to express the problem of searching 
for the optimal strategy as the typical problem of minimizing a 
functional, where the functional is the CPU time. When 
defining the optimization process as a dynamical system, a 
more standard approach is to use differential equations, in 
continuous form. We can rewrite the main system of the 
optimization procedure (1) in continuous form as the following 
system of differential equations: 

 

  
( )UX,i

i f
dt
dx

= ,   i=1, 2,..., N,        (5) 

 
Together with the equations (2), (3) and (4), this system 

specifies the continuous form of the optimization process. The 
structure of the functions ( )UX,if  is defined by a concrete 
optimization method. For example, for the gradient method, it 
takes the following form: 
 

( ) ( )UXUX ,, F
x

f
i

i δ
δ

−= , i=1, 2,…,K 

   (6) 

( ) ( ) ( ) iKi
i

Kii uF
x

uf α
δ
δ

−− −+−= 1,, UXUX , i=K+1,..., N, 

 
where iα  is the additional parameter defining an increment of 

the value of the dependent variables ix  in the course of 
optimization and computed by the formula 

( )[ ]s
i

s
ii x−= +11 Xη

τ
α , and ( )Xiη  is the implicit function 

defining the component number i of a vector X at the solution 
of system (2), τ is the step of integration and s is the step 
number of the procedure of numerical integration of system 
(5). The operator ixδδ /  is defined by the formula 

( ) ( ) ( )
i

p
MK

Kp pii x
x

xxx ∂
∂

∂
∂ρ

∂
∂ρρ

δ
δ ∑

+

+=

+=
1

XXX  and determines 

the application of the gradient method for a complex function 
that has both independent and dependent variables. 
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 By using formulas (2)–(6), we formulate the circuit 
optimization process as a controllable process or as a 
controllable dynamical system. The vector U defines the right 
hand parts of the system (5) and gives the possibility of 
changing the optimization strategies and operation’s number. 
Such approach contains optimization strategies much more 
optimum than TSO. So, the vector U is the principal tool for 
searching and constructing the optimization process with a 
minimal computing time. Control functions u j , so and 
functions ( )UX,if  are piecewise continuous. The optimal 
control problem for the system (5) with the non-continuous 
right hand parts can be solved most correctly using Pontryagin 
maximum principle.  

Let’s analyse an example of the optimization of the simplest 
nonlinear circuit for which the solution was obtained on the 
basis of the maximum principle. We will consider the simplest 
nonlinear circuit of a voltage divider in Fig. 1. 

 

 
 

Fig. 1. Simplest nonlinear voltage divider 
 

Let us consider that the nonlinear element has the following 
dependence: 
 

 ( )01 VVbaRn −+= ,         (7) 
 
where a>0, b>0, a>b,  0V  and 1V  the voltages on an input 
and an output of circuit. 
 We will consider that 0V  is equal 1. We will define the 

variables x1, x2. Rx =1 , 12 Vx = . Thus the vector of phase 

variables 2R∈X . In this case the formula (7) can be replaced 
with the following expression: 
 
        ( )12 −+= xbaRn .          (8) 

 
We can present the equation of a circuit in the form: 

 

   ( ) ( )[ ] 01, 1212211 =−−++≡ xxbaxxxxg      (9) 
 

The circuit optimization is formulated as a problem of 
obtaining at the exit of a circuit of the defined voltage w. We 
will determine the cost function of the optimization process by 
the formula: 
 

   ( ) ( )2
2 wxC −=X .        (10) 

 

In this case, the problem of circuit optimization is converted 
to minimization of the cost function ( )XC . Following 
theoretical bases that were developed in [10], we formulate the 
problem for circuit optimization as a task of search of the 
optimization strategy with a minimum possible CPU time. For 
this purpose, we define the functional, which is subject to 
minimization, by the following expression: 
 

         ( )∫=
T

dtfJ
0

0 X ,        (11) 

 
where ( )X0f  is the function that is conditionally determining 
the density of a number of arithmetic operations in a unit of 
time t. In that case, the integral (11) defines total number of 
operations necessary for circuit optimization and is 
proportional to the total CPU time. 

The structure of function ( )X0f  cannot be defined. 
However, we can compute CPU time using the possibilities of 
the compiler. We will further identify the integral (11) with 
CPU time, and therefore, the problem of minimization of CPU 
time corresponds to a problem of minimization of this integral. 

According to [10], we introduce the control vector U that 
consists of only one component u(t) for the reviewed example. 

The process of circuit optimization thus can be described by 
the system (12) with restrictions (13): 
 

                  
( )uxxf

dt
dx

i
i ,, 21= ,   i=1, 2,      (12) 

 
( ) ( ) 0,1 211 =− xxgu ,        (13) 

 
where functions ( )uxxfi ,, 21  are defined by a concrete 
numerical method of optimization. When using a gradient 
method, these functions are defined by the following formulas: 
 

              
( ) ( )XF

x
uxxf

i
i δ

δ
−=,, 21 , i=1,2,     (14) 

 
where the operator ixδδ /  is defined by the expression:

 ( ) ( ) ( )
i

p
MK

Kp pii x
x

xxx ∂
∂

∂
∂σ

∂
∂σσ

δ
δ ∑

+

+=

+=
1

XXX . 

The value u(t)=0 corresponds to the traditional strategy of 
optimization (TSO). In this case in the system (12), there is 
only one equation for the independent x1 variable, whereas the 
variable x2 is defined from the equation (13). The value u(t)=1 
corresponds to the modified traditional strategy of 
optimization (MTSO) when both x1 and x2 variables are 
independent. In this case, the system (12) includes two 
equations for the independent variables x1 и x2, and the 
equation (13) disappears. A change in the value of function 
u(t) with 0 on 1 and back can be made at any moment and 
generates a set of various strategies of optimization. Two main 
strategies are defined as follows: 
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1) TSO, u=0. The equations (12)–(14) are replaced with the 
following equations: 
 

            1

2

2

1

dx
dx

dx
C

dt
dx ∂

−= ,       (15) 

 

        

( )
dt
dx

x
x

dt
txdx 1

1

212 ,
∂
∂

= ,       (16) 

 

where the derivative 12 / dxdx  is defined from the equation 
(13) and can be calculated by the formula: 
 

      
( ) 












++

++
+−=

1
2

1

1

1

2

4

21
2
1

bxcx

bcx
bdx

dx , с=a-b. 

 
2) MTSO, u=1. The equations (12) are transformed to the 

next one: 
 

          
( ) ( )[ ]XX 2

1gC
xdt

dx
i

i +−=
δ
δ ,   i=1, 2.    (17) 

 
In a general case, the right-hand parts of the equations (12) 

can be presented in the form: 
 

( ) ( ) ( ) ( )21122111211 ,,1,, xxfuxxfuuxxf ⋅+⋅−= , 
 (18) 

( ) ( ) ( ) ( )21222121212 ,,1,, xxfuxxfuuxxf ⋅+⋅−= , 
 
where the functions ( )21, xxfij  are determined by the 
following formulas: 
 

( ) ( )
( ) 












++

++
+−

−
=

1
2

1

12
2111

4

21,
bxcx

bcx
b

xwxxf  

( ) ( ) ( ) ( )[ ]{ }221222112 1112, xxbaxxxxxf −++−−−=    
                        (19) 

( ) ( )
( )

2

1
2

1

1
2

2
2121

4
1

2
,













++

++
+−

−
=

bxcx

bax
b

xwxxf  

( ) ( ) ( )
( ) ( )[ ]22212

2122122

11
222,

xxbaxxx
bxxcwxxxf

−++−⋅
++−−−=  

 
According to methodology of the maximum principle, the 

system of the conjugate equations for additional variables 
21,ψψ  has the next form: 

 
( ) ( )

2
1

212
1

1

2111 ,,,, ψψψ
⋅

∂
∂

−⋅
∂

∂
−=

x
uxxf

x
uxxf

dt
d ,  

                      (20) 
( ) ( )

2
2

212
1

2

2112 ,,,, ψψψ
⋅

∂
∂

−⋅
∂

∂
−=

x
uxxf

x
uxxf

dt
d . 

The Hamiltonian is expressed by the following formula: 
 

( ) ( )uxxfuxxfH ,,,, 21222111 ⋅+⋅= ψψ       (21) 
 

Substituting (18) in (21) and doing identical 
transformations, we obtain the following expression for the 
Hamiltonian: 
 

        

( ) ( )
( )2121

2121221111

,,,
,,

ψψ
ψψ

xxu
xxfxxfH

Φ⋅+
⋅+⋅=

,  (22)    

where 
 

 

( ) ( ) ( )[ ]
( ) ( )[ ]212121222

2111211212121

,,
,,,,,

xxfxxf
xxfxxfxx

−⋅+
−⋅=Φ

ψ
ψψψ . (23) 

 
According to the maximum principle, we obtain the next 

main condition for the control function u: 
 

        



>Φ
<Φ

=
0,1
0,0

u
        

(24) 

 
The behaviour of the control function u(t) that corresponds 

to the maximum principle is also defined by the functions 
( )t1ψ  and ( )t2ψ , which are computed from the Eq. (20). 

III. NUMERICAL RESULTS 
The solution of the equations (20) depends on the initial 

values 10ψ  и 20ψ , which are defined within the precision of 
the common multiplier. One of these constants can be taken 
arbitrarily. Let us define the constant 110 −=ψ . The value of 

the constant 20ψ , which corresponds to the correct solution of 

a task in the conditions of the maximum principle c20ψ , can 
be obtained by iterative procedure. We use the iterative 
procedure for minimizing the functional (11). 

The analysis of the process of optimization for a similar 
example, which is carried out in work [18], showed that the 
TSO (u=0) is the optimal one when both initial values of 
variables 1x  and 2x , ( 10x , 20x ) are positive. In this 
case the number of iterations is equal to 3898, and CPU time is 
equal to 42.88 msec for the initial point 10x =1, 20x =2. At 

the same time, the negative initial values of the variable 2x  
significantly lead to other results. In the case of negative initial 
values of the variable 2x , emergence of effect of acceleration 
of the process of circuit optimization is possible [18]. This 
effect accelerates the optimization process. It is interesting to 
check if this result corresponds to the maximum principle. 

Fig. 2 shows the trajectories of the process of circuit 
optimization with the negative initial value of coordinate 20x , 

( 10x =1, 20x = –2). 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017 

ISSN: 1998-4464 277



 

 

 
 

Fig. 2. Trajectories of optimisation process with initial point 
( 10x =1, 20x = –2) and different values of 20ψ . 

 
The structure of function u(t) that was obtained 

automatically and corresponds to a condition of the maximum 
principle (24) has one or two points of a rupture that 
corresponds to switching from the trajectory corresponding to 
MTSO (u=1, a dotted curve) on trajectory corresponding to 
TSO (u=0, a continuous curve). Coordinates of a point of 
switching of tsw depend on the value of 20ψ . The data 
corresponding to the different points of switching from 1 to 11 
in Fig. 2 are presented in Table 1. 
 
Table 1. Data of some strategies with different initial values of 

variable ( )t2ψ . 

 
 A change in the value of 20ψ  from 7.27 to 7.245 leads to 
reduction of iterations number and CPU time from 14.34 msec 
to 1.14 msec, but the CPU time is increasing later on. That is 
visible also in Fig. 3, where the dependence of CPU time of a 
task from initial value 20ψ  is shown. 

 The value opt20ψ = 7.245 corresponds to the minimum CPU 
time Tmin and in this case the integral J and the initial value of 
variable ( )t2ψ  provides the maximum value of a Hamiltonian 
according to the maximum principle. 

 
 

Fig. 3. CPU time for different initial values of ( )t2ψ  
 
 The gain in time computed as time relation for TSO by the 
minimum time of Tmin thus equal to 37.6 times. 
 Let us define partial Hamiltonians H(0), H(1) by formulas: 
 

    
( ) ( )0,,0,, 21222111)0( xxfxxfH ⋅+⋅= ψψ ,  (25) 

 
    

( ) ( )1,,1,, 21222111)1( xxfxxfH ⋅+⋅= ψψ .  (26) 
 

Dependencies of the functions H(0)(t), H(1)(t) and ( )tΦ  for 
various values of parameter 20ψ  are presented in Fig. 4 – Fig. 

6. Optimum value of a constant 20ψ  is equal to 7.245 and 
corresponds to the results presented in Fig. 4. 

In this case the function H(1)(t) passes above the function 
H(0)(t) from the beginning of the process until the point Tsw. At 
this point both functions become equal, function ( )tΦ  
changes a sign, and according to condition (24), value of the 
control function u is changing to 1 on 0. Then, the iterative 
process comes to the end because the criterion for the end of 
the optimization process is satisfied. 

 

 
 
Fig. 4. Time dependency of functions H(0)(t), H(1)(t) and ( )tΦ  

for optimal parameter 20ψ . 

N Control Switching Total CPU
 function points iterations time

  structure  number (msec)
1 7.27 1; 0; 1      198; 199 2606 14.34
2 7.265 1; 0; 1      200; 201 2464 13.56
3 7.26 1; 0; 1      202; 203 2274 12.52
4 7.255 1; 0; 1      203; 204 2148 11.82
5 7.25 1; 0; 1      205; 206 1759 9.68
6 7.245 1; 0 206 207 1.14
7 7.24 1; 0 209 620 5.67
8 7.235 1; 0 211 711 6.66
9 7.23 1; 0 214 785 7.46

10 7.225 1; 0 216 818 7.81
11 7.22 1; 0 219 855 8.21

20ψ
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We can analyse the behaviour of the functions H(0)(t), H(1)(t) 
and ( )tΦ  with non-optimal initial value 20ψ . The point of 
switching of the control function u from 1 on 0 is not 
satisfying the optimum point. The behaviour of functions 
H(0)(t), H(1)(t) and ( )tΦ  is shown in Fig. 5 for 20ψ =7.249.   
 

 
 
Fig. 5. Time dependency of functions H(0)(t), H(1)(t) and ( )tΦ  

for non-optimal value of parameter 20ψ , opt2020 ψψ > . 
 

The control function switching happens before an optimum 
point and the computing time grows till 7.55 msec. 

The behaviour of these functions is given in Fig. 6 at 20ψ = 
7.24. In this case the control function switching happens after 
an optimum point and the time of computing grows again to 
5.67 msec. 
 

 
 
Fig. 6. Time dependency of functions H(0)(t), H(1)(t) and ( )tΦ  

for non-optimal value of parameter 20ψ , opt2020 ψψ < . 
  

It is clear that when the point of switching differs from the 
optimal one, the value of the Hamiltonian is changing over 
time. 

The analysis of the optimization process for the considered 
circuit has shown that use of the maximum principle really 
allows for the finding of the optimum structure of the control 
function u(t) by means of the iterative procedure. At the same 
time the considerable reduction of the processor time in 

comparison with the traditional approach is observed. The 
interesting question is whether it is possible to extend the 
obtained analytical result to the numerical solution of the 
optimization problem for nonlinear circuit of any dimension. 
The next section is devoted to this problem. 

IV. N – DIMENSIONAL CASE 
We need to extend earlier obtained result on the solution of 

N-dimensional problem of circuit optimization.  Let's consider 
the problem of optimization of a nonlinear circuit with two 
nodes shown on Fig. 7. 
 

 
 

Fig 7. Nonlinear two-node voltage divider. 
 
The given circuit is a nonlinear divider of voltage. There are 

three independent parameters (K=3) and two dependent ones 
(M=2). The nonlinear element has the following dependency: 

( )2
2101 VVayyn −+= . Here and further, all physical 

variables are presented in the normalized, unitless form. We 
define the voltage V0 as 1, and the variables 4321 ,,, xxxx  

and 5x  as: ,1
2
1 yx = ,2

2
2 yx = ,3

2
3 yx =  14 Vx = , and 

25 Vx = . By defining the components 321 ,, xxx  using the 
above formulas, we automatically obtain positive values of the 
conductance, which eliminates the issue of positive 
definiteness for each resistance and conductance and allows us 
to carry out optimization in the full space of the values of these 
variables without any restrictions. The vector of the phase 
variables of the circuit is 5RX ∈ . In this case the nonlinear 
element is defined by the following expression: 

( )2
5401 xxayyn −+= . 

Let's determine function of the purpose of process of 
optimization by the formula: 
 

( ) ( )2
5 wxC −=X ,        (27) 

 
where w – the required value of output voltage. 
 The model of a circuit is defined by the following system: 
 

( ) ( ) ( )[ ]( ) 01 2
2454

2
540

2
141 =−−−+−−≡ xxxxxxayxxg X   

                        (28) 
( ) ( )[ ]( ) 02

3554
2

5402 =−−−+≡ xxxxxxayg X  
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The system of equations of the optimization procedure is 
presented by the system (5) with right hand parts (6). 

Let's obtain the main expressions corresponding to the 
maximum principle. The conjugate system of the equations for 
the additional variables iψ  has a form: 

 
( )∑

=

⋅
∂

∂
−=

N

k
k

i

ki

x
f

dt
d

1

, ψψ UX ,      (29) 

 
The Hamiltonian is determined by the following formula: 

 

( ) ( ) ( ) ( )∑∑∑
+===

⋅+⋅=⋅=
N

Ki
ii

K

i
ii

N

i
ii fffH

111
,,,,, UXUXUXUΨX ψψψ   (30) 

 
where the first and second sums are defined by the following 
expressions: 
 

( ) ( )( )∑ ∑ ∑∑
= = ==

⋅−⋅−=⋅
K

i

K

i

M

k i

k
ki

i
i

K

i
ii x

gu
x
Cf

1 1 1

2

1
,

δ
δψ

δ
δψψ XUX

 

( ) ( )

( )( )∑ ∑

∑∑

+= =
−

+=
−

+=












+

−−=⋅

N

Ki

M

k i

k
k

i
iKi

N

Ki
iiKi

N

Ki
ii

x
g

u
x
Cu

uf

1 1

2

11
1,

δ
δ

δ
δψ

αψψ

X

UX

     (31)

 

 
As a result the Hamiltonian can be expressed as follows: 

 
( ) 210,, hhhhH c +++=UΨX      (32) 

 
where  hc  is the part of a Hamiltonian that does not depend on 
the control vector, 
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+==
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, αψ
δ
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Other components of a Hamiltonian depend on the control 

vector U: 
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 Let's designate the sum of these three components as 

( )UΨX ,,vh  (hv=h0+h1+h2). Formulas (5)-(6) and (27)-(36) 
define the process of system optimization and the process of 
computing a Hamiltonian in case of a K independent variable 
and M dependent variables. In the case of the circuit presented 
in Fig. 7, formulas are used for K=3 and M=2. In this case the 

control vector of U contains two components (u1, u2). The 
supremum of the function ( )UΨX ,,H  in the parameter U will 
be designated Hmax: 
 

( ) ( ) ( )UΨXΨXΨX
U

,,sup,,max vc
u

hhH +=
∈

.   (37) 

 
 For the circuit in Fig. 7 this function is defined by the 
following expression: 

 

( ) ( ) ( )( ) ( )( )
( )( ) ( )( ) 








+=
1,1,,,0,1,,

,1,0,,,0,0,,
max,,max ΨXΨX

ΨXΨX
ΨXΨX

vv

vv
c hh

hh
hH .  (38) 

 
 The structure of the control vector providing this maximum 
in each point of optimization process represents the result of 
the use of the maximum principle. This optimal structure 
ensures the minimal value of the functional (11) and the 
minimal computing time.  

V. NUMERICAL RESULTS AND DISCUSSION  
The analysis of the process of optimization for a circuit with 

two nodes allows for the finding of the optimum structure of 
the control vector. 

The possibility of applying the maximum principle of 
Pontryagin to the problem of optimization of electronic 
circuits is analyzed. It is shown that in spite of the fact that the 
problem of optimization is formulated as a nonlinear task, and 
the maximum principle in this case isn't a sufficient condition 
for obtaining a maximum of the functional, it is possible to 
obtain the decision in the form of local minima. Local minima 
of the functional, which is defined as the processor time 
necessary for the procedure of optimization, provide a rather 
low value of the functional. The relative acceleration of the 
CPU time for the best strategy found by means of maximum 
principle compared with the traditional approach is equal two 
to three orders of magnitude. 

The behaviour of Hamiltonian for four possible options of 
the control vector U: (00), (01), (10), and (11), with the 
correct initial value of an auxiliary vector Ψ , 
( ( )5.2,32.0,9.1,35.0,85.1,3.00 −−−=сΨ ) is presented in Fig. 8. 

The value of с0Ψ  has been obtained by the additional 
optimizing procedure on the basis of a gradient method for the 
following initial point in process of designing X0: ( 10x =1.0, 

20x = 1.0, 30x =1.0, 40x = -1.5, 50x = -1.6). Four possible 
combinations of the components of the control vector U define 
four various dependencies for Hamiltonian:

 ( ))11()10()01()00( ,,, HHHH . The Hamiltonian corresponding 

to the control vector U=(11) has the greatest value of all 
possible. 

Therefore, the optimum trajectory corresponds to this vector 
and defines the first part of a trajectory in the space of 
parameters. Some two-dimensional projections of a trajectory 
of optimization process in the space of variables X are 
presented in Fig. 9. 
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Fig. 8. Time dependency of functions H(00), H(01), H(10), H(11) 
for correct value of parameter с0Ψ . 

 

 
 

Fig. 9. Projections of trajectory of optimization process with 
initial point X0: )6.1,5.1,1,1,1( 5040302010 −=−==== xxxxx . 

 
 A part of the trajectory from point S to point Sw corresponds 
to the control vector (11). Then, at a time point of 5.753 msec, 
which corresponds to 121 steps of integration of the system 
(5), the Hamiltonian corresponding to the strategy with the 
control vector (00) becomes the greatest of all, and at this 
moment the vector (00) becomes the optimum control vector. 
The trajectory includes the jump and the current point of the 
optimization process instantly moves to the final point of the 
solution of a problem of F. This effect was named as a special 
effect of acceleration of the circuit optimization process. 
 The data of optimization process for the presented circuit 
for four strategies of structural basis and the same initial point 
X0 are provided in Table 2 for comparison.   
 

Table 2. Data of all strategies of structural basis. 

 

All the strategies provide the same solution for the 
independent variables 321 ,, xxx , minimizing the objective 
function C(X), but they have the different iteration numbers 
and different total CPU time. 

The most rapid strategy is MTSO, which corresponds to the 
control vector (11) has a processor time of 7.934 sec. 
Acceleration for the obtained optimum strategy in comparison 
with MTSO with control vector (11) of Table 2 is equal to 
1,379 times and 2,795 times in comparison with TSO with 
control vector (00). 

The behaviour of the Hamiltonian that corresponds to 
another choice for the initial point of optimization process of 
circuit X0: ( 10x =1.0, 20x = 1.0, 30x =1.0, 40x = -2.5, 50x = 
-2.5) for four possible values of the control vector U: (00), 
(01), (10), and (11) is shown in Fig. 10. 
 

 
 
Fig. 10. Time dependency of functions H(00), H(01), H(10), H(11) 

for other correct value of parameter 
( )25.0,99.1,625.0,8.0,42.00 −−−=cΨ . 

 
In this case the following correct value of an auxiliary 

vector  ( )25.0,99.1,625.0,8.0,42.00 −−−=cΨ  providing the 
minimum value of processor time has been obtained. In this 
example, the optimization procedure is defined by the control 
vector (11) from T=0 to T=1.761msec because the 
Hamiltonian of H(11) has the maximum value for this control 
vector of the four possible. Then, at a time of T=1.761 msec, 
which corresponds to the 35th step of process of integration of 
system (5) the Hamiltonian corresponding to the control vector 
(00) has the maximum value (H(00)>=H(11)) and the switching 
to the TSO is observed. The movement corresponding to the 
strategy (00) is carried out on one step of integration and the 
current point of the optimization process moves to the final 
point of F with the given accuracy. It is clear from the 
behaviour of the projections of the optimization trajectory 
shown in Fig. 11. 

It is important to emphasize that the numerical algorithm 
automatically switches from one strategy to another on the 
basis of ratio (38), corresponding to the maximum principle. 

 

N Control Iterations Total CPU
vector number time (sec)

1      (0 0) 116973 16.081
2      (0 1) 139143 8.897
3      (1 0) 133154 11.241
4      (1 1) 170953 7.934
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Fig. 11. Projections of trajectory of optimization process with 

initial point X0: )5.2,5.2,1,1,1( 5040302010 −=−==== xxxxx . 
 

It would be desirable to note that the obtained decision is 
not the only local minimum of the target function of (11). 
Other local minimum has been reached with the other vector 
Ψ . 

The behaviour of the function of Hamilton for the same 
initial point of the optimization process of the circuit X0: 

)5.2,5.2,1,1,1( 5040302010 −=−==== xxxxx  but containing other 

initial value for auxiliary vector Ψ is presented in Fig. 12. 
The correct value of с0Ψ  obtained by the additional 

optimizing procedure is next ( )6.0,2.0,5.0,02.0,1.00 −−−=cΨ . 
In this case the other strategy is optimal one. 
 

 
 
Fig. 12. Time dependency of functions H(00), H(01), H(10), H(11) 

for other correct value of parameter 
( )6.0,2.0,5.0,02.0,1.00 −−−=cΨ . 

 
An additional optimization by means of parameter 0Ψ  

leads to other local minimum that is visible from the obtained 
dependencies. The Hamiltonian corresponding to the strategy 
with control vector (10) accepts the maximum value and this 
strategy is the first part of the optimum strategy. The 
Hamiltonian corresponding to TSO with the control vector 
(00) is greater than for all other strategy from the point 
corresponding to the 38th step of integration, and a switching 
to TSO takes place. That is also clear from the behaviour of 
projections of the optimization trajectory in Fig. 13. 

 
 

Fig. 13. Projections of trajectory of optimization process for 
other correct value of ( )6.0,2.0,5.0,02.0,1.00 −−−=cΨ . 

 
 The total time of optimization is equal 3.345 msec. This 
decision represents other local minimum of the functional (11). 
 It is important to note that the strategy found from the 
conditions of the maximum principle and corresponding to the 
control vector with two parts (10) and (00) and switching 
between them on a 73rd step of integration has not been 
predicted in previous research. In earlier executed analysis it 
was supposed that the optimum strategy must be constructed 
on the basis of the combination of MTSO and TSO. This 
assumption is not always fulfilled as shown in the present 
analysis. 
 This example shows that earlier predicted optimum structure 
consisting of only of MTSO and TSO is not always optimum.  

VI. CONCLUSION 
 Analysis of the application of maximum principle to a 
problem of circuit optimization proves that the formerly 
studied effect of acceleration on the process of optimization 
appears owing to this principle. This means that the maximum 
principle of Pontryagin provides a theoretical justification for 
the acceleration effect that appears when we use the 
generalized formulation of process of circuit optimization. It is 
confirmed that the maximum principle allows for finding one 
or several local minima of the functional that is defined as the 
processor time. Aside from that, the use of the maximum 
principle provides the chance to significantly reduce the 
computing time for circuit optimization. 
 The analysis of optimization process of the presented 
circuits showed that application of the maximum principle 
really allows finding the optimum structure of the control 
vector U(t) by means of iterative procedure. These results were 
obtained for N-dimensional space of parameters.  
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